



#### Mercury dynamics in Stormwater Drain System PSNS015

# Preliminary Results from USGS Investigations December 2011 – June 2012

Kathy Conn, Tony Paulson, and Rick Dinicola USGS Washington Water Science Center Tacoma, WA

OU B Marine Technical Project Team Meeting
USGS Washington Water Science Center, Tacoma, WA
January 16, 2013

#### Recent USGS/US Navy Program

- 2007-2012 activities include:
  - Synthesis of existing data
  - Methylmercury survey
    - Methylation in sediments
    - Release and Bioaccumulation
  - Sources and Sinks survey
    - Well LTMP-3 submarine discharge
    - Dry dock solids
    - Steam plant conversion
    - Creeks, wet weather
    - LTMP-5 and MW-709 submarine discharge
    - Tidal flushing of PSNS015



#### **Background**

- Former Site 2 soils contaminated with PCBs, mercury, lead
- PSNS015 is a conduit for inland seawater movement during high tides

#### Definitions:

THg = total mercury (all chemical forms)

WTHg (unfiltered total mercury) = FTHg (filtered total mercury) + PTHg (particulate total mercury)

#### PSNS015 stormwater drain



Preliminary results, subject to revision

#### **Background**

 Well 722 - FTHg increased in groundwater during ebbing tides



#### **Background**

- In McDonalds vault, FTHg = 144 ng/L in freshwater (1/9/2009)
- In vault 2253, 730 g Hg/yr = estimated Hg loading from tidal flushing through PSNS015 stormwater drain system



TIME ON MARCH 31, 2010

Preliminary results, subject to revision

#### **Objectives**

- Determine inland extent of seawater intrusion within PSNS015 stormwater drain system
- Identify potential sources of mercury in freshwater to McDonalds vault
- Characterize tidally-influenced concentrations of Hg and ancillary data in McDonalds vault during a spring tide
  - Repeat tidal study during a neap tide

#### **Extent of Seawater Intrusion**

 Approach: Collect Cond/Temp/Depth (CTD) profiles at 6 vaults at high tide



#### **Extent of Seawater Intrusion**

 Freshwater/Saltwater stratification occurs between police station and gym



#### Identify freshwater sources of Hg

- Approach Collect water samples from 6 vaults and inverts (22 unique locations) during ebbing tide
  - Analytes
    - Filtered total mercury (FTHg)
    - Particulate total mercury (PTHg)
    - Total suspended solids (TSS)
    - specific conductance
    - pH, alkalinity, major ions
- All 22 samples
  - Freshwater (Specific Conductance < 300 μS/cm)</li>
  - Low mercury (FTHg < 10 ng/L)</li>

#### Identify freshwater sources of Hg

- Difference between January 2009 (144 ng/L) and December 2011 (<10 ng/L):</li>
  - Precipitation and recharge
    - 2011 2X precipitation before and during sampling
  - Neap versus Spring Tides
    - 2009 Spring tide (13' difference)
- New Hypothesis:
  - Mercury contamination in PSNS015 is from contaminated soils at former Site 2 (seaward of McDonalds vault)
  - Retention of freshwater during neap tides
  - Complete flushing of storm drain during spring tides

# Characterize tidally-influenced Hg concentrations in McDonalds vault

- Approach
  - 2 tidal studies spring tide and neap tide
  - 13-hour sampling study (lower high to higher high)
  - <0.1 inches of rainfall in previous 24 hours</p>
  - 30-minute water level measurements
  - Surface and Bottom CTD profiles (also inland vaults)
  - 35 samples collected:
    - Hourly samples from bottom of vault
    - Other samples: water surface and inverts, upland vaults
    - Field and laboratory replicates
  - Analytes:
    - FTHg, PTHg, TSS, Sp. Cond.
    - pH, alkalinity, major ions
    - *E. coli* and total coliforms (qualitative, Spring) and fecal coliform (quantitative, Neap)



- CTDs in McDonalds vault
  - As water level dropped, saltwater moved out to Sinclair Inlet and freshwater lens remained



During high tide, salt wedge extended to gym



 Water elevation – At 9:30, water level in Sinclair Inlet dropped below vault water level



- FTHg Concentrations
  - Increased when Sinclair Inlet water level dropped below vault water level (freshwater in vault)
  - Higher FTHg in surface (vs. bottom) samples



FTHg concentrations high in freshwater, low in saltwater



- FTHg at Gym vault
  - Elevated FTHg in surface (freshwater) sample in flooding tide



#### **Summary of Spring Tide study**

- Spring tide conditions resulted in a flushing of PSNS015 to Sinclair Inlet
  - Flooding tide: Freshwater lens was pushed up the drain (and into contaminated soils)
  - High tide: Saltwater intrusion extended to gym
  - Ebbing tide: Draining of pipe due to hydraulic head
    - FTHg concentrations up to 60 ng/L (McDonalds freshwater)
- Very high FTHg (1140 ng/L) in saltwater in well OUBT
   722 adjacent to seawall



- CTDs in McDonalds vault (vs. Spring):
  - Sharper salt/fresh interface during ebbing tide
  - Similar curve, lower water levels

Preliminary results, subject to revision



Salt wedge extended to gym (same as Spring)



 Water elevation – Water level in Sinclair Inlet never dropped below vault water level



- FTHg concentrations
  - Less than 25 ng/L (vs. 60 ng/L during spring tide)



- FTHg concentrations
  - No relationship with specific conductance



Gym vault - Low FTHg concentrations



#### **Continuing data analysis**

- PTHg and TSS to analyze THg of solids
  - Preliminary analysis suggests similar trends as FTHg
- Major ions
  - Relationship to Hg



#### **Summary to date**

- In PSNS015 during high tide, saltwater can extend up to the gym
  - Freshwater lens sitting on top of saltwater
- No sources of FTHg identified upstream of McDonalds vaults
  - During ebbing tide, with minor precipitation, FTHg <10 ng/L in freshwater in 6 vaults from McDonalds to Commissary
- Spring tide conditions resulted in a flushing of PSNS015 to Sinclair Inlet
  - During ebbing tide:
    - Sinclair Inlet water level drops below McDonalds vault water level
    - Highest concentrations were in freshwater (FTHg ~ 60 ng/L) in the McDonalds vault
    - Also very high FTHg concentrations (1140 ng/L) in saltwater in well OUBT 722 adjacent to seawall
       Preliminary results,

subject to revision

Hg in freshwater is not from overland flow

#### **Summary to date**

- Neap tide conditions do not result in PSNS015 flushing
  - Sinclair Inlet water level does not drop below McDonalds vault water level
  - Low FTHg concentrations (typically <10 ng/L, all <25 ng/L)</li>
- Hypothesized mechanism:
  - During flooding tide:
    - Seawater extends to gym
    - Freshwater lens is pushed up the drain and into Former Site
       2 contaminated soils
  - Ebbing tide:
    - Pipe drains due to hydraulic head, carrying extracted Hg to Sinclair Inlet

#### Acknowledgements

- MIPR N6247312MPT0001
- NAVFAC
  - Ellen Brown, Mark Wicklein
- Navy SPAWAR
  - Bob Johnston and storm water team
- USGS Washington Water Science Center
  - Lisl Fasser, James Foreman, Sarah Henneford, Terri Hurlbut Greg Justin, Cg Laird, Karen Payne, Rick Wagner
- USGS Mercury Research Laboratory
  - Dave Krabbenhoft, John DeWild



Contact:
Kathy Conn
kconn@usgs.gov
(253) 552-1677